32 resultados para Somatosensorial cortex

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to examine quantitative differences in lobar cerebral cortical volumes in a healthy adult population. Quantitative volumetric MRI of whole brain, cerebral and cerebellar volumes was performed in a cross-sectional analysis of 97 normal volunteers, with segmented frontal, temporal, parietal and occipital cortical volumes measured in a subgroup of 60 subjects, 30 male and 30 female, matched for age and sex. The right cerebral hemisphere was larger than the left across the study group with a small (<1%) but significant difference in symmetry (P < 0.001). No difference was found between volumes of right and left cerebellar hemispheres. Rightward cerebral cortical asymmetry (right larger than left) was found to be significant across all lobes except parietal. Males had greater cerebral, cerebellar and cerebral cortical lobar volumes than females. Larger male cerebral cortical volumes were seen in all lobes except for left parietal. Females had greater left parietal to left cerebral hemisphere and smaller left temporal to left cerebral hemisphere ratios. There was a mild reduction in cerebral volumes with age, more marked in males. This study confirms and augments past work indicating underlying structural asymmetries in the human brain, and provides further evidence that brain structures in humans are differentially sensitive to the effects of both age and sex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions. J Neurophysiol 101: 2030–2040, 2009. First published January 28, 2008; doi:10.1152/jn.91104.2008. Neural control of muscle contraction seems to be unique during muscle lengthening. The present study aimed to determine the specific sites of modulatory control for lengthening compared with isometric contractions. We used stimulation of the motor cortex and corticospinal tract to observe changes at the spinal and cortical levels. Motor-evoked potentials (MEPs) and cervicomedullary MEPs (CMEPs) were evoked in biceps brachii and brachioradialis during maximal and submaximal lengthening and isometric contractions at the same elbow angle. Sizes of CMEPs and MEPs were lower in lengthening contractions for both muscles (by 28 and 16%, respectively; P 0.01), but MEP-to-CMEP ratios increased (by 21%; P 0.05). These results indicate reduced excitability at the spinal level but enhanced motor cortical excitability for lengthening compared with isometric muscle contractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1β, or air puff. The D1 antagonist, SCH23390, and the D2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1β. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic–pituitary–adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic–pituitary–adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1β. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic–pituitary–adrenal axis responses to systemic interleukin-1β, we next mapped the effects of similar lesions on interleukin-1β-induced Fos expression in regions previously shown to regulate the hypothalamic–pituitary–adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1β, an outcome that is difficult to reconcile with a simple medial prefrontal cortex–bed nucleus of the stria terminalis–corticotropin-releasing factor cell control circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to social stress has been linked to the development and maintenance of mood-related psychopathology; however, the underlying neurobiological changes remain uncertain. In this study, we examined numbers of ΔFosB-immunoreactive cells in the forebrains of rats subjected to 12 episodes of social defeat. This was achieved using the social conflict model whereby animals are introduced into the home cage of older males (“residents”) trained to attack and defeat all such “intruders”; importantly, controls were treated identically except that the resident was absent. Our results indicated that the only region in which ΔFosB-positive cells were found in significantly higher numbers in intruders than in controls was the infralimbic medial prefrontal cortex (mPFC). This same effect was not apparent using another psychological stressor, noise stress. Cells of the infralimbic mPFC also displayed evidence of chromatin remodeling. We found that exposure to repeated episodes of social defeat increased numbers of cells immunoreactive for histone H3 acetylation, but not for histone H3 phosphoacetylation, in the infralimbic mPFC. Collectively, these findings highlight the importance of the infralimbic mPFC in responding to social stress—a finding that provides insight into the possible neurobiological alterations associated with stress-induced psychiatric illness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide variety of stressors elicit Fos expression in the medial prefrontal cortex (mPFC). No direct attempts, however, have been made to determine the role of the inputs that drive this response. We examined the effects of lesions of mPFC catecholamine terminals on local expression of Fos after exposure to air puff, a stimulus that in the rat acts as an acute psychological stressor. We also examined the effects of these lesions on Fos expression in a variety of subcortical neuronal populations implicated in the control of adrenocortical activation, one classic hallmark of the stress response. Lesions of the mPFC that were restricted to dopaminergic terminals significantly reduced numbers of Fos-immunoreactive (Fos-IR) cells seen in the mPFC after air puff, but had no significant effect on stress-induced Fos expression in the subcortical structures examined. Lesions of the mPFC that affected both dopaminergic and noradrenergic terminals also reduced numbers of Fos-IR cells observed in the mPFC after air puff. Additionally, these lesions resulted in a significant reduction in stress-induced Fos-IR in the ventral bed nucleus of the stria terminalis. These results demonstrate a role for catecholaminergic inputs to the mPFC, in the generation of both local and subcortical responses to psychological stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Increased oxidative stress is thought to contribute to the pathophysiology of major depressive disorder (MDD), which is in part due to diminished levels of glutathione, the primary anti-oxidant of the brain. Oral administration of N-acetyl-cysteine (NAC) replenishes glutathione and has therefore been shown to reduce depressive symptoms. Proton magnetic spectroscopy (1H-MRS) that allows quantification of brain metabolites pertinent to both MDD and oxidative biology may provide some novel insights into the neurobiological effects of NAC, and in particular metabolite concentrations within the anterior cingulate cortex (ACC) are likely to be important given the key role of this region in the regulation of affect.

Objective: The aim of this study was to determine whether the metabolite profile of the ACC in MDD patients predicts treatment with adjunctive NAC versus placebo.

Methods: This study was nested within a multicentre, randomized, double-blind, placebo-controlled study of MDD participants treated with adjunctive NAC. Participants (n = 76) from one site completed the spectroscopy component at the end of treatment (12 weeks). Spectra from a single-voxel in the ACC were acquired and absolute concentrations of glutamate (Glu), glutamate-glutamine (Glx), N-acetyl-aspartate (NAA) and myo-inositol (mI) were obtained. Binary logistic regression analysis was performed to determine whether metabolite profiles could predict NAC versus placebo group membership.

Results: When predicting group outcome (NAC or placebo), Glx, NAA and mI were a significant model, and had 75% accuracy, while controlling for depression severity and sex. However, the Glu, NAA and mI profile was only predictive at a trend level, with 68.3% accuracy. For both models, the log of the odds of a participant being in the NAC group was positively related to NAA, Glx and Glu levels and negatively related to mI levels.

Conclusion: The finding of higher Glx and NAA levels being predictive of the NAC group provides preliminary support for the putative anti-oxidative role of NAC in MDD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.